Role of Thalamic Projection in NMDA Receptor-Induced Disruption of Cortical Slow Oscillation and Short-Term Plasticity
نویسندگان
چکیده
NMDA receptor (NMDAR) antagonists, such as phencyclidine, ketamine, or dizocilpine (MK-801) are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP), multi- (MUA) and single-unit activity, and evoked potential, including paired-pulse facilitation (PPF) in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC) in urethane anesthetized rats. Systemic administration of MK-801 (0.05 mg/kg, i.v.) decreased overall MUA, with a diverse effect on single-unit activity, including increased, decreased, or unchanged firing, and in line with our previous findings shifted delta-frequency power of the LFP and disrupted PPF (Kiss et al., 2011). In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD). Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDAR antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDAR blockade.
منابع مشابه
P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation
Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...
متن کاملDelta oscillation and short-term plasticity in the rat medial prefrontal cortex: modelling NMDA hypofunction of schizophrenia.
Dysfunction of the prefrontal cortex (PFC) is considered to be an important factor contributing to a decrease in cognitive performance of schizophrenia patients. The medial PFC (mPFC) is innervated by the hippocampus/subiculum, and the subiculum-mPFC pathway is known to be involved in various cognitive processes. Glutamate-containing subicular axons innervate cortical pyramidal neurons and inte...
متن کاملNovel presynaptic mechanisms for coincidence detection in synaptic plasticity.
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملP19: Long-Term Potentiation
The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...
متن کامل